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Abstract
The nonlinear interaction between an AFM tip and a sample gives rise to oscillations of the cantilever at integral multiples

(harmonics) of the fundamental resonance frequency. The higher order harmonics have long been recognized to hold invaluable

information on short range interactions but their utilization has thus far been relatively limited due to theoretical and experimental

complexities. In particular, existing approximations of the interaction force in terms of higher harmonic amplitudes generally

require simultaneous measurements of multiple harmonics to achieve satisfactory accuracy. In the present letter we address the

mathematical challenge and derive accurate, explicit formulae for both conservative and dissipative forces in terms of an arbitrary

single harmonic. Additionally, we show that in frequency modulation-AFM (FM-AFM) each harmonic carries complete informa-

tion on the force, obviating the need for multi-harmonic analysis. Finally, we show that higher harmonics may indeed be used to

reconstruct short range forces more accurately than the fundamental harmonic when the oscillation amplitude is small compared

with the interaction range.
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Introduction
AFM measurements are presently utilized to generate atomic

resolution [1,2], 3D force maps that carry unprecedented infor-

mation on the interfacial properties of soft matter [3], water

structure [1,2] and ion ordering [4]. The generation of such

force maps relies invariably on AC detection methods, most

commonly at frequencies in the vicinity of the cantilever’s

fundamental resonance frequency. In frequency modulation-

AFM (FM-AFM), the force is usually reconstructed from the

resonance frequency shift, which in the small amplitude regime

is proportional to the derivative of the force with respect to
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tip–surface distance. Similarly, it has been recognized that

higher harmonics generated by the nonlinear tip–surface inter-

action (to be distinguished from higher flexural modes of the

cantilever) are related to higher derivatives of the force, and

thus carry additional information on the interaction [5-11].

Broad implementation of force spectroscopy by analysing

higher harmonics has been nevertheless impeded by the lack of

a closed-form expression for the force in terms of measured

quantities, namely, the lack of a higher harmonics analogue of

the Sader–Jarvis formula for the fundamental harmonic [12,13].

In the present letter we fill this gap by providing such formulae

for both conservative and dissipative forces.

In FM-AFM, a cantilever is oscillated at its resonance

frequency using an external driving force and a feedback loop.

The motion of the cantilever is often modelled as a driven

damped harmonic oscillator with an additional force, Fts, stem-

ming from tip–surface interaction

(1)

Here, k is the effective cantilever spring constant, ω0 is the

fundamental resonance frequency in the absence of tip–surface

interaction, q(t) is the tip position, γ is the damping coefficient,

and F0 and ω are the amplitude and frequency of the driving

force, respectively. As the cantilever is brought close to a

surface, the tip–surface interaction forces shift the resonance

frequency. The relation between the frequency shift and Fts, in

the case where the force depends only on tip position, was first

derived by Giessibl as [14]

(2)

Here, Δω is the frequency shift, a is the oscillation amplitude

and z is the distance of closest approach to the surface in the

oscillation cycle. Various techniques have been proposed to

invert the convolution in Equation 2 and extract the interaction

force from the measured shift in frequency. At first, these were

either numerical solutions or analytic approximations of large or

small amplitudes [15], but later Sader and Jarvis derived an

interpolation formula which is valid for all amplitudes [12,13]

(the Sader–Jarvis formula). Its application has also been

extended to AM-AFM [16].

Expressions similar to Equation 2, relating the Fourier compo-

nents of higher harmonics to a convolution over Fts, have been

derived [15,17], but existing methods to recover Fts from higher

harmonics rely on spectral analysis of the AFM signal [18,19],

and require the measurement of a significant number of

harmonics to obtain reasonable accuracy [5,17]. Although

measurement of all spectral components would theoretically

enable fast reconstruction of the force while scanning, the

simultaneous acquisition of many harmonics is demanding

and requires multiple lock-in amplifiers. For the generation

of 3D force maps, the multi-harmonic reconstruction is

further complicated since multiple scans must be performed

at different heights. Additionally, higher harmonic amplitudes

decrease rapidly with harmonic number, limiting the number of

measurable harmonics and, hence, the accuracy of force recon-

struction. Some methods to amplify the signals of higher

harmonics have been exercised [6,20], but these do not

completely alleviate the problem. Here, we show that a full

force curve can be extracted from the amplitude of any single

higher harmonic. We provide simple, explicit expressions for

the interaction force in terms of higher harmonic amplitudes,

allowing the benefits of high-harmonics force spectroscopy

with no need for multiple-harmonics measurements and

analysis.

There are several advantages to be gained by expressing the

force as a function of higher harmonic amplitudes. First, the

existence of these amplitudes depends entirely on the presence

of nonlinear interaction forces. Higher harmonic amplitudes

may therefore be measured with greater precision compared

with fundamental harmonic measurements. While the former

are measured with reference to zero, the latter are obtained by

offsetting large, inherently noisy signals, such as the driving

frequency in FM-AFM or oscillation amplitude in AM-AFM.

Second, there is evidence [5-11] that higher harmonics are more

sensitive to short-range forces than the fundamental harmonic.

This becomes evident when the cantilever oscillation amplitude

is small compared with the interaction length. As we show, the

frequency shift in this case is related to the first derivative of the

force, while higher harmonics are related to higher derivatives.

The nth harmonic therefore probes directly the nth derivative of

the force, enhancing the sensitivity to short range forces. The

main difficulty in measuring higher harmonics is their small

magnitude due to the weak response of the cantilever to

frequencies far from its resonance. At these frequencies, the

noise in well-designed AFMs is dominated by the shot noise of

the photodiode in the optical detection system. The SNR of

higher harmonic amplitudes is therefore expected to deteriorate

with harmonic order, but in many cases a significant number of

higher harmonics can still be measured [10,21]. Unlike previous

higher harmonic reconstruction methods, the disclosed scheme

can be applied also to cases where only a few harmonics are

measurable.
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Results and Discussion
Consider Equation 1 with the interaction force expressed by its

Fourier components:

(3)

The cantilever motion is assumed to be nearly that of a free

harmonic oscillator with small harmonic contributions, μn and

νn, generated by the nonlinear tip–surface interaction

(4)

with μn/a and νn/a << 1 for all n.

We begin by analysing the even, conservative part of the force

[13], which depends only on tip–sample separation. Substi-

tuting Equation 4 into Equation 3 and using orthogonality, one

arrives at the relation

(5)

Using the definition of an and changing variables one finds

(6)

where

(7)

and Tn(u) = cos(ncos-1(u)) is the nth order Chebyshev polyno-

mial of the first kind. As expected, by setting γ = 0 in (7), we

recover the result obtained by Dürig [17].

To invert the integral in Equation 6 and express the force in

terms of the measured amplitudes μn and νn, we generalize the

derivation of the Sader–Jarvis formula [12] to an arbitrary

harmonic, n. First, we express Feven in terms of its inverse

Laplace transform, :

(8)

Using the integral representation [22] of In, the nth order, modi-

fied Bessel function of the first kind, along with the Rodrigues’

representation [22] of Tn,

(9)

the integral over u can be evaluated

(10)

Comparison between Πn and Feven in Laplace space shows that

(11)

where Bn(x) = (−1)nex/πIn(x). Making use of the asymptotic

forms [22] of In, an approximation to Bn(x) is constructed

(12)

For 0 < di < n+1/2, Equation 12 has the correct asymptotic

behaviour for very small and very large x. An arbitrary number

of terms of the form , for some set of coefficients ci, can be

fitted to improve the accuracy of Equation 12 as needed. This is

in fact what the Sader–Jarvis formula does for the fundamental

harmonic – it interpolates between the regimes of large and
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(15)

(20)

small amplitudes, where analytic solutions exist, by fitting

terms in the intermediate regime.

Substituting Equation 12 into Equation 11 and using the

following results of fractional calculus [12],

(13)

where α > 0 and m = [α] + 1, the force is expressed explicitly in

terms of the interpolation parameters ci, di. In particular, if di

are chosen to be integers, the force is given by

(14)

The force may thus be derived in terms of any harmonic,

provided that the interpolation coefficients ci approximate Bn

sufficiently well. Explicit formulae for the force in terms of

harmonics 2–6 of the fundamental frequency are given in

Table 1, where the interpolation coefficients were calculated

such that  for all positive x. The force

formulae in terms of other higher harmonics may be derived in

a similar way. In the special case n = 2 (Equation 15),

A similar procedure can be applied to recover the odd, dissipa-

tive, part of the force from higher harmonics, but a subtlety

must first be addressed. The derivation of Feven relies on its sole

dependence upon tip–sample separation in Equation 6. This is

not the case for Fodd, which is out of phase with q(t). This issue

is resolved by noting that many dissipative forces have the form

[13]

(16)

with Γ, the generalised damping coefficient, depending only

upon tip–sample separation. It then follows from Equation 3

that

(17)

where  is the nth order

Chebyshev polynomial of the second kind and

(18)

I n t e g r a t i n g  b y  p a r t s  a n d  u s i n g  t h e  i d e n t i t y

, Equation 17 assumes the

form

(19)

where . Comparing Equation 19 with Equa-

tion 6, we see that these expressions are identical and therefore

have the same solutions. We may then refer to Table 1 for these

solutions. For example, using Equation 15, the formula for the

generalized damping coefficient for n = 2 is readily derived as

(Equation 20):
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Table 1: Formulae for the force in terms of harmonics 1–6. The Sader–Jarvis formula for n = 1 is given here for completeness. An implementation of
these formulae is available in the supplementary Mathematica file.

n Feven in terms of the nth harmonic

1

2

3

4

5

6

Expressions in terms of higher harmonics may be similarly

derived.

We have shown that by measuring any pair of higher harmonic

amplitudes, μn and νn, the full force profile can be recovered.

However, the same information can be derived by analysing the

first harmonic frequency shift. This begs the question, what new

information have we gained in the process? Several experi-

ments [5,7,8] show that for small oscillation amplitudes, higher

harmonics enhance the sensitivity to short range interactions

compared with first harmonic FM-AFM. This sensitivity has

been reasoned by an expression derived by Giessibl [6], which

relates the nth harmonic to a convolution over the nth deriva-

tive of the interaction force. In the small oscillation amplitude

limit, the two are proportional. Using Equation 14, we reaffirm

this relation. For small amplitudes, Equation 14 is dominated by

the term proportional to a−n, and the even force term can be

approximated by

(21)

Integrating Equation 21 by parts and then differentiating n times

with respect to z one finds

(22)

which is similar to the small amplitude approximation derived

from Equation 2

(23)

As expected, higher harmonics are proportional to higher

derivatives, while the frequency shift used in first harmonic

force spectroscopy is proportional to the first derivative. This

suggests that reconstruction of the force using higher harmonics

is more sensitive to short range forces compared with recon-

struction using the Sader–Jarvis formula, as long as the oscilla-

tion amplitude is small compared with the characteristic inter-

action length.
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Figure 1: Lennard–Jones interaction (solid red line) and reconstructed forces. Blue circles depict reconstruction using the second harmonic. Green
diamonds depict reconstruction using the Sader–Jarvis formula for the fundamental harmonic. Amplitudes of oscillation used are /ℓ = 0.1 (a), /ℓ = 1
(c), /ℓ = 10 (d). (b) depicts magnification of the dashed frame marked in (a).

To test the accuracy of our force inversion formulae, we insert a

known conservative force into Equation 6, a generalized

damping coefficient into Equation 17, and then recover them

with second harmonic analysis, namely with Equation 15 and

Equation 20. For the conservative interaction, we employ a

Lennard–Jones force law

(24)

Where F0 is constant and ℓ is the interaction length scale. For

the dissipative interaction, we use a viscoelastic type of force

[23], characterized by the generalized damping coefficient

(25)

where η is the viscosity, R is the tip radius, and the sample

surface is assumed to be at z = 0. The results displayed in

Figure 1 and Figure 2 demonstrate the accuracy of our

formulae. Figure 1a,b confirms, in the small amplitude regime,

the increased sensitivity to short range interaction of force

reconstruction using higher harmonics compared with the

Sader–Jarvis formula. As the oscillation amplitude grows

smaller compared with the range of the Lennard–Jones poten-

tial, the Sader–Jarvis formula grows inaccurate, while recon-

struction using the second harmonic maintains its accuracy.

When the amplitude is increased (Figure 1c), the accuracy of

the Sader–Jarvis formula improves and for large amplitudes

(Figure 1d) both methods yield satisfactory results. Figure 2

depicts the reconstruction of the generalized damping coeffi-

cients. Both the Sader–Jarvis formula for dissipative forces and

the second harmonic reconstruction lose accuracy as the inden-

tation into the simulated surface increases to the order of the

oscillation amplitude, but second harmonic reconstruction

remains the more accurate of the two.

Conclusion
We have derived a general procedure yielding both conserva-

tive and dissipative forces in terms of cantilever oscillations at

an arbitrary harmonic, and provided explicit formulae for

harmonics 2–6. This procedure reconstructs the full interaction
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Figure 2: Generalized damping coefficient of a viscous interaction (solid red line) and its reconstructions. Blue circles depict reconstruction using the
second harmonic. Green diamonds depict reconstruction using the Sader–Jarvis formula for the fundamental harmonic. The tip radius and viscosity
are R = 10 nm and η = √10 Pa·s. The amplitudes of oscillation are  = 10 nm (a) and  = 20 nm (b).

force curve from any single harmonic, obviating existing recon-

struction methods based on simultaneous measurement of

multiple higher harmonics. In addition, it was shown that in the

small amplitude regime, short range forces are reconstructed

more accurately by higher harmonic analysis compared with the

fundamental harmonic one.

Supporting Information
A supplementary Mathematica notebook file containing an

implementation of the formulae of Table 1 for

reconstruction of simulated conservative forces can be

found in the ZIP file of the Supporting Information.

Supporting Information File 1
Force reconstruction.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-6-14-S1.zip]

Acknowledgements
This work was supported by the Israeli Science Foundation

under grants 1403/12 and I-Core 1902/12.

References
1. Fukuma, T.; Ueda, Y.; Yoshioka, S.; Asakawa, H. Phys. Rev. Lett.

2010, 104, 016101. doi:10.1103/PhysRevLett.104.016101
2. Herruzo, E. T.; Asakawa, H.; Fukuma, T.; Garcia, R. Nanoscale 2013,

5, 2678–2685. doi:10.1039/c2nr33051b
3. Higgins, M. J.; Polcik, M.; Fukuma, T.; Sader, J. E.; Nakayama, Y.;

Jarvis, S. P. Biophys. J. 2006, 91, 2532–2542.
doi:10.1529/biophysj.106.085688

4. Loh, S.-H.; Jarvis, S. P. Langmuir 2010, 26, 9176–9178.
doi:10.1021/la1011378

5. Garcia, R.; Herruzo, E. T. Nat. Nanotechnol. 2012, 7, 217–226.
doi:10.1038/nnano.2012.38

6. Giessibl, F. J. Surf. Interface Anal. 2006, 38, 1696–1701.
doi:10.1002/sia.2392

7. Hembacher, S.; Giessibl, F. J.; Mannhart, J. Science 2004, 305,
380–383. doi:10.1126/science.1099730

8. Wright, C. A.; Solares, S. D. Nano Lett. 2011, 11, 5026–5033.
doi:10.1021/nl2030773

9. Santos, S.; Barcons, V.; Font, J.; Verdaguer, A.
Beilstein J. Nanotechnol. 2014, 5, 268–277. doi:10.3762/bjnano.5.29

10. Preiner, J.; Tang, J.; Pastushenko, V.; Hinterdorfer, P. Phys. Rev. Lett.
2007, 99, 046102. doi:10.1103/PhysRevLett.99.046102

11. Stark, R. W.; Heckl, W. M. Rev. Sci. Instrum. 2003, 74, 5111.
doi:10.1063/1.1626008

12. Sader, J. E.; Jarvis, S. P. Appl. Phys. Lett. 2004, 84, 1801.
doi:10.1063/1.1667267

13. Sader, J. E.; Uchihashi, T.; Higgins, M. J.; Farrell, A.; Nakayama, Y.;
Jarvis, S. P. Nanotechnology 2005, 16, 94–101.
doi:10.1088/0957-4484/16/3/018

14. Giessibl, F. J. Phys. Rev. B 1997, 56, 16010.
doi:10.1103/PhysRevB.56.16010

15. Dürig, U. Appl. Phys. Lett. 1999, 75, 433. doi:10.1063/1.124399
16. Katan, A. J.; van Es, M. H.; Oosterkamp, T. H. Nanotechnology 2009,

20, 165703. doi:10.1088/0957-4484/20/16/165703
17. Dürig, U. New J. Phys. 2000, 2, 5. doi:10.1088/1367-2630/2/1/005
18. Stark, M.; Stark, R. W.; Heckl, W. M.; Guckenberger, R.

Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 8473–8478.
doi:10.1073/pnas.122040599

19. Legleiter, J.; Park, M.; Cusick, B.; Kowalewski, T.
Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 4813–4818.
doi:10.1073/pnas.0505628103

20. Sahin, O.; Quate, C.; Solgaard, O.; Atalar, A. Phys. Rev. B 2004, 69,
165416. doi:10.1103/PhysRevB.69.165416

21. Sahin, O.; Magonov, S.; Su, C.; Quate, C. F.; Solgaard, O.
Nat. Nanotechnol. 2007, 2, 507–514. doi:10.1038/nnano.2007.226

22. Milne-Thomson, L. M.; Abramowitz, M.; Stegun, I. A. Handbook of
Mathematical Functions; Dover: New York, 1972; pp 375–377.

23. Garcia, R.; Gómez, C. J.; Martinez, N. F.; Patil, S.; Dietz, C.;
Magerle, R. Phys. Rev. Lett. 2006, 97, 016103.
doi:10.1103/PhysRevLett.97.016103

http://www.beilstein-journals.org/bjnano/content/supplementary/2190-4286-6-14-S1.zip
http://www.beilstein-journals.org/bjnano/content/supplementary/2190-4286-6-14-S1.zip
http://dx.doi.org/10.1103%2FPhysRevLett.104.016101
http://dx.doi.org/10.1039%2Fc2nr33051b
http://dx.doi.org/10.1529%2Fbiophysj.106.085688
http://dx.doi.org/10.1021%2Fla1011378
http://dx.doi.org/10.1038%2Fnnano.2012.38
http://dx.doi.org/10.1002%2Fsia.2392
http://dx.doi.org/10.1126%2Fscience.1099730
http://dx.doi.org/10.1021%2Fnl2030773
http://dx.doi.org/10.3762%2Fbjnano.5.29
http://dx.doi.org/10.1103%2FPhysRevLett.99.046102
http://dx.doi.org/10.1063%2F1.1626008
http://dx.doi.org/10.1063%2F1.1667267
http://dx.doi.org/10.1088%2F0957-4484%2F16%2F3%2F018
http://dx.doi.org/10.1103%2FPhysRevB.56.16010
http://dx.doi.org/10.1063%2F1.124399
http://dx.doi.org/10.1088%2F0957-4484%2F20%2F16%2F165703
http://dx.doi.org/10.1088%2F1367-2630%2F2%2F1%2F005
http://dx.doi.org/10.1073%2Fpnas.122040599
http://dx.doi.org/10.1073%2Fpnas.0505628103
http://dx.doi.org/10.1103%2FPhysRevB.69.165416
http://dx.doi.org/10.1038%2Fnnano.2007.226
http://dx.doi.org/10.1103%2FPhysRevLett.97.016103


Beilstein J. Nanotechnol. 2015, 6, 149–156.

156

License and Terms
This is an Open Access article under the terms of the

Creative Commons Attribution License

(http://creativecommons.org/licenses/by/2.0), which

permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of

Nanotechnology terms and conditions:

(http://www.beilstein-journals.org/bjnano)

The definitive version of this article is the electronic one

which can be found at:

doi:10.3762/bjnano.6.14

http://creativecommons.org/licenses/by/2.0
http://www.beilstein-journals.org/bjnano
http://dx.doi.org/10.3762%2Fbjnano.6.14

	Abstract
	Introduction
	Results and Discussion
	Conclusion
	Supporting Information
	Acknowledgements
	References

